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Ahtract. A model for high-7, oxides, consisting of Josephsoncoupled superconducting layers 
with both inm- and interlayer pairings. is used to study the momalous positive curvature in the 
temperature dependence of the lower critical magnetic field, H,I (T). An equilibrium distribution 
of magnetic fields in a single vortex is calculated for magnetic held parallel and perpendicular 
to the superconducting layers. By using this distribution the lower critical field HC] is obtained. 
For Josephson-coupled layered superconductors with only intralayer pairing, the cmss section of 
the single vortex panllel to the layers is known to have an elliptic form. The existence of WO 

order pmmeters in our model gives rise to an additional anisotropy in the distribution of the 
magnetic held in a single voltex. The results obtained for QI make it possible to understand the 
experimentally observed anomalous enhancement of RI at low temperatures in YBaD?@. 
as well as in TI- and Bi-based superconductors. 

1. Introduction 

The DC magnetization measurements on high-T, polycrystalline compounds [I ,  21 and single 
crystals of YBa2Cu307-, [3,4] show remarkable anomalous enhancements of the lower 
critical field, H,r(T), for both orientations of the magnetic field, parallel and perpendicular 
to the c axis. Non-conventional HC1 ( T )  results have also been reported for bismuth-based 
(Biz.zSrzCao.*CuzOs+~) [5] and thallium-based (TlzBazCaCuzO,) [6] superconductors. An 
unusual upturn of H,((T) in YBazCu,O,-, single crystal with T, = 92 K occurs for 
T < T* = 40 K [3,4]. For single-crystal T12Ba2CaCu20, with Tc = 110 K an anomalous 
enhancement of H,, takes place below approximately SO60 K [6]. 

Several theoretical models were put forward to explain this anomalous temperature 
dependence of the lower critical field, Hcl ( T ) ,  observed in high-T, superconductors. 

Koyama et al [7] have considered an extension of the Lawrence-Doniach model of 
multilayer structures, composed of arrays of superconducting (sc) and normal layers, to the 
case of superconductors with non-equivalent layers. The unusual temperature dependence 
of Hcl has been explained to be a result of rapid enhancement of the superconducting order 
parameter on the normal layers at low temperatures due to a proximity effect. 

An essential deviation of the temperature dependence of He, from those of Bardeen- 
Cooper-Schneffer (BCS) weak-coupling theory may he expected in the strong-coupling limit 
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of the Eliashberg theory [8,9]. Low-frequency phonons, present in the high-T, compounds, 
act as static impurities and determine the temperature dependence of the electron mean free 
path at low temperature. As a result, the shape of all the temperature dependence is changed 
on lowering the temperature 18.91. 

In this paper yet another mechanism is suggested to explain the positive curvature in 
the temperature dependence of both parallel and perpendicular components of Hcl, The 
existence of two order parameters in a superconductor is shown to lead to the anomalous 
enhancement of H,, at low temperatures. For layered superconductors, pairing may occur 
both inside each layer and between neighbouring layers. 

In the case of tl < kT,", where t~ is the transverse resonance integral and TLo) is the 
critical temperature, formally evaluated by the mean-field method, the Josephson coupling 
between the layers is realized. The differential-difference Ginzburg-Landau freeenergy 
functional for Josphson-coupled layered superconductors with two order parameters has 
been obtained in the previous paper [IO]. 

In the present model intra- and interlayer pairing occur at two different critical 
temperatures, Tm and Tel. Such pairing behaviour was proposed ab initio by introducing 
two different constants for electron-electron attractive interactions. Though the mechanism 
of electron attraction is not specified in our model, an interlayer pairing may have non- 
phonon character, (see e.g. [ll]). One possible mechanism of interlayer pairing is the 
polarization of dielectrics between SC layers. This mechanism was recently applied [I21 to 
study layered high-temperature superconductors. The existence of two order parameters of 
pairing is expected to change the thermodynamic properties of the layered superconductors. 

It should be noted that the lower critical magnetic field HCt for Josephson-coupled 
layered superconductors with only intralayer pairing has been studied by many authors (see 
[13-161 and references therein) on the basis of the Lawrence-Doniach freeenergy functional 
[m 
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2. The magnetic field distribution in a single vortex 

The vortical state is set up for typeIl superconductors in a magnetic field, H ,  between 
two critical values, HE] < H c Hcz. In this case the penetration of a magnetic field 
into the sample in the form of flux lines, each carrying a flux quantum of & = hc/2e, is 
energetically favourable. In the vicinity of Het and H > Hcl, which implies a small vortex 
concentration, the interaction between vortices may be neglected. Then the lower critical 
field Hcl is obtained by the usual thermodynamic relation 

QI = 4nE1 /h 

given that the energy &I per unit length for a single vortex line is known. 
For temperatures (Tc - T)/T, >> t:/T; and magnetic fields slightly greater than H , I ,  

the influence of the field on the modulus of the order parameters ]A01 and [All  can be 
neglected, and we take = const and [A11 = const. Then, representing Ak as 

A&, j )  = lab1 expIivh,  j ) l  (k = 0 , U  

with being the phases of the order parameters, the Ginzburg-Landau free-energy functional 
F with two order parameters, obtained in our previous work [lo], may be rewritten as (see 
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formula (23) in [lo]): 

Here, N,o(T) = 21A01~ and &(T) = 2181 1' are the densities of superconducting electrons 
for intra- and interlayer pairing, respectively. The remaining notations have the same 
meaning as in [lo]. 

The temperature dependences of N,o(T) and N,,(T) are defined by equilibrium values 
of order parameters A0 and A I ,  which satisfy the Gor'kov equations (19) and (20) in [lo]. 
The equilibrium values of A0 and AI are studied in the appendix by minimizing the free- 
energy functional F(A0 ,  AI] ,  presented by the expression (23) in [lo]. 

The two components of the lower critical field H ,  parallel and perpendicular to the sc 
layers, will be studied separately. Let the magnetic field H be along the z-axis, which 
is normal to the layers, i.e. H = {0, 0, HI .  The equations determining the equilibrium 
values of magnetic field and order-parameter phases are obtained by minimizing the free- 
energy functional (1) with respect to the components of the vector potential A and the 
order-parameter phases. For the sake of simplicity, we present here only the equations for 
the magnetic field: 

Equations (2) and (3) together with Maxwell's equation yield the well known London 
equation, namely, 

h t  ( ~ 3 ~ H / i l x ~  + a 2 H / a y 2 )  - H = 0 

A? = m c 2 / [ 4 n e 2 [ ~ , o ( ~ )  + N , I ( T ) I ] .  

(4 )  

where h~ is the London penetration depth along an sc layer, determined by the expression 

(5) 

For a single vortex centred at the origin, the solution of equation (4) for distances 

(6) 

lrl >> 611 is known to be given (see e.g. [IS]) as 

~2 = (@0/4nh:) [In(hL/fn) +EO] 
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where E, ,  is the intralayer coherence length. The quantity EO corresponds to the 'core' energy 
of the vortex filament, and EO - 1. 

According to the appendix, the densities of SC electrons &(T) and N S I ( T )  depend 
non-linearly on temperature and have positive curvature in the vicinity of the transition 
point. The same temperature dependence is also appropriate to the lower critical magnetic 
field HA. 

For a magnetic field lying in sc layers and directed, say, parallel to the x-axis, i.e. 
H = (H, 0, 0}, minimization of the free-energy functional (1) gives the followingequations: 
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j )  - %(r, j + 1) + -A ,  hc 
h2 alp,, 
4m a+ 

vi(r. j )  - % ( T ,  j )  - 

r p ~ ( ~ ,  j )  - pl(r, j - 1) - -A ,  hc 

In principle, we can obtain an equation for the magnetic field by eliminating the phases 
'po and (01 from (7) and (S), and replacing vector potential A by H by using Maxwell's 
equations. Since (7)-(10) are non-linear equations, the elimination of (PO and p1 is carried 
out after expansion of sine functions in (7)dIO). Transforming the discrete variable j into 
the continuous variable z = j d  and replacing the finite differences by differentiations in 
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(7)-(10), we get the following equations for the magnetic field H and the phases 'po and 
VI: 

where AL is the London penetration depth along sc layers, defined by expression (3, and 
2x1 in ( 1  1 )  is the penetration depth in the z direction, defined as 

A;' = (16ne2d2 /h2c2) [2E~N@ + ELN,I + EOI(N,ON,I)I '~].  (14) 

Since A;' contains both densities, NSo and N,I ,  of superconducting electrons, its 
temperature dependence must reveal similar anomalies as 1;'. Equation ( I  I )  gives the 
distribution of magnetic field in a single vortex, directed parallel to sc layers, under the 
boundary condition requiring the total magnetic field flux through the yz plane to be equal 
to the flux quantum 40. As can be seen from (]I), the existence of two order parameters 
reduces the equation for H to a non-homogeneous equation. For Nm + 0 (or NSI 4 0) 
the right-hand side of ( 1 1 )  vanishes. The solutions of (12) and (13) are: 

After the coordinate transformation 

y=A~ps inB and z = A ~ p c o s B  

equation (1  1) takes the following form: 

p- p- + - - p ' H = f ( B )  
:p( 2) :: 

where 

with 
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When the magnetic field is parallel to the layers, the study of a vortex in a losephson- 
coupled layered sc with only intralayer pairing has revealed a non-symmetric distribution 
of magnetic field in a vortex [13-16]. The cross section has been found to be in an elliptic 
form. In our model, the existence of the second component of the order parameter produces 
an additional angular dependence of magnetic field in a vortex. 

The solution of equation (16) is chosen as 

By representing also the right-hand side of (16) in the form 

with 

the angular dependence of (16) may be separated. The equation for R,(p) is a non- 
homogeneous Bessel equation. After solving this equation we can represent H(p, e) as 

where K, is the modified Bessel function. Approximate calculations of the integrals in (22) 
for p << 1 yield the following expression for H ( p .  e) :  

H ( P ,  e) = - [In(l/p) + +zcos(20) + o(p4cOs(4e))i (23) 27YhLhJ 

where 

B = B o / ( l  + PolZ + BI/(I + BdZ. (24) 

In Cartesian coordinates the expression (23) looks like 

H ( Y ,  Z)=(@o/4nALAJ){- ~ ~ ~ ~ Y / ~ ~ ~ 2 + ~ Z / ~ ~ ~ Z l + B ~ ~ Z / ~ L ~ z - ~ ~ / ~ I ~ z ~ ~  4' << AJ, z <<AL. 

(25) 

Using expression (25) for H ( y ,  z), we can calculate the energy P of the vortex filament. 
Since the centre of the vortex lies between the layers for a magnetic field directed parallel 
to the layers, the lower limit of integration in 7 with respect to z must be equal to d .  As 
a result, the calculations give the following expression for H:]: 

@\ = (@0/4~h~hd[ ln (h~ /~ ' )  + ( 2  - 4/n)B1. (26) 

An unusual temperature dependence of the penetration depth hL and AJ (see (5) and 
(14)) gives rise to the existence of a positive curvature in the temperature dependence of 
HJ\ . 
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3. Conclusions 

In this paper we have studied the equilibrium distribution of the magnetic field in a single 
magnetic vortex for a Josephson-coupled layered superconductor with two order parameters, 
corresponding to inter- and intralayer pairings. The lower critical magnetic field was also 
calculated for the system under consideration. 

For a magnetic field parallel to sc layers, the equilibrium distribution of the field in 
the cross section of a single vortex reveals an additional dependence on the direction (see 
equations ( I I ) ,  (16) and (23), (25)) due to the existence of two components of the order 
parameter. 

Starting from the result obtained, it may be possible to understand the anomalous upturn 
of &(T) in high-Tc oxides [ I 4 1  for an arbitrarily oriented magnetic field. 

The anisotropy of the magnetic properties of the model studied here is described by two 
components of the penetration depth, AL and hj (see equations (5) and (14)). The anisotropy 
of the lower critical magnetic field represented as H&/H!l is mostly characterized by the 
ratio Aj/XL, i.e. 

For the known high-T, materials the value of this anisotropy is rather large. For instance, 
in YBa2Cu30, single crystals, ratio ij/hL has an approximate value of 5, i.e. i j / i ~  - 5 
[3] .  In Bi- and TI-based oxides this ratio is larger but not very much so. 

By using the formulae (5) and (14) we obtain 

The Josephson energy, EL,  in (28) depends on the characteristic small parameter of the 
electron anisotropy t l / & F  as 

E l  = t: /32&~. 

Here t~ is the resonance integral between layers and &F is the Fermi energy of an electron 
inside layers. The second parameter Eo1 in (28), which is due to the existence of both intra- 
and interlayer pairings, depends linearly on the anisotropy parameter t l / & ~  (see [lo]): 

For the case of decreasing t l .  the last term in the denominator of (28) may be the leading 
term. A crossover from the dependence given as 

HA R 2  &F _-_-  
H:] md2 t i  

to a dependence given as 
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is expected with increasing anisotropy of superconductors. Therefore, a considerable 
increase of the anisotropy of a system may result in a weak increase in the anisotropy 
of magnetic properties of the system. 

In this work we have not studied the influence of thermal fluctuations of the magnetic 
vortices. However, in high-T, oxides an isolated vortex line along the c-axis can wander 
significantly in the ab plane due to the high critical temperatures and small coherence length 
[19-211. This effect may lead to an entanglement of flux lines and, as a result, to a new 
entangled flux liquid phase in a magnetic field H 2 H,I [19,20]. 

The effect of fluctuations on the properties of Josephson-coupled layered superconduc- 
tors with only intralayer pairing in a magnetic field parallel to the layers was considered 
by Efetov [22]. The cores of the vortices for a magnetic field parallel to the layers fitted 
between the superconducting layers. Motion of these vortices in a direction normal to the 
superconducting planes is difficult owing to the existence of Peierls friction [23]. Since 
the correlation length inside CuO2 planes in high-T, superconductors is shorter than it  is 
in conventional superconductors, entanglement of flux lines seems to occur in the direc- 
tion parallel to the superconducting planes, i.e. these vortex lines may wander only on the 
superconducting layers. 

Appendix 

The temperature dependences of sc electron concentrations, Nd(T) = 21A0l2, and N,I (T) = 
2lA1l2, are defined by the equilibrium values of the order parameters, which are found by 
solving Gor’kov’s equations presented by expressions of (19) and (20) in  [lo]. We shall 
again minimize the fieeenergy functional of (23) with (A6) in [lo] over A0 and A I  to keep 
the convenient notations. In the main approximation (SI. ,8z << Bo) we obtain 

ao(T)A: t 4EoiA; t Bo (lA01’ + IA I  I*) A: = 0 (AI) 

(W ai(T)A; +4EoiAg + Bo (flAo12 + IA1Iz) A; = 0. 

For half-filling (Eol = 0) these equations have the following solutions (we assume 
Tk > T~I ) :  

(i) T > TCo: 

A$ = 0 A;=O 

(ii) T c Ta: 

A g # O  A ; = O  
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(iv) T < T,:/T&: 

A: # O  A ; # o  

and in this interval IAo12 and lAIl2 are obtained as a solution of the following system of 
equations: 

ffo + BoIAolz + Bo1 A ,  1' = 0 

f f 1  + Bo/Ao12 + fBolAiIZ = 0 

(-46) 

(A71 

Thus, for the half-filling case the temperature dependence of SC electron concentrations 
N,o(T) = 21801~ and N,I = 21A1 1' are defined by equations (A3HA9). The transition at 
T = Tcl seems to be a first-order phase transition with concentration jump 

It should be noted that the equations (A3)4A9) give positive curvature in the temperature 
dependence of the sc electron concentration because of the different slopes in the 
temperature dependences of (A4) and (A5). 

For a case of Eol # 0 the temperature dependences of N,o(T) and NS1(T)  become 
rather complicaied. Mixing of the equations (AI) and (A2) due to the linear terms (- E o ] )  
turns out to be essential. So, equations (AI) and (A2) take the following forms: 
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Here the upper sign on the RHS corresponds to T$. Since Td > GI,  always T$ > T, and 

T$ and Af, # 0, 
A; # 0 at T T$ (according to equations (AIO) and (All)  the condition A0 # 0 requires 
A1 # 0 and vice versa). Thus the transition to the sc state occurs at relatively high 
temperature T$ > Td, Tcl. At T ,  < T < T$ and T < TA the approximate solutions of 
(A12) and (A13) are 
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TA < Tc1. 
As is seen from equations (A12) and (A13), Ai  = A; = 0 at T 

In T I  < T < TCO and TA < T < TA the equilibrium values of lAolZ and 1A1I2 are 
generally defined by positive roots of (A12) and (A13). 

As is seen from (A16) and (A17), in the temperature interval Tm < T < T$ (where 
aoar < ( ~ E o I ) ’ ) ,  1AoI2 and IAI I’ are monotonic functions of T with positive second 
derivatives, which means the existence of positive curvature in the temperature dependence 
of both sc electron densities, IAo12 and [AI 1’. 
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